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Think about a baseball game. The batter has to decide whether  
and how to hit the incoming pitch. He needs to judge the position and 
speed of the ball, given his own visual uncertainty, and to estimate  
the probability of a successful swing, given his own visuo-motor 
uncertainty.

Visuo-motor decisions such as this are common in everyday life and 
have been studied in a rich and increasing body of laboratory tasks1–3. 
Human subjects are frequently found to compensate for their own 
sensorimotor uncertainty in ways that approximate an ideal Bayesian 
observer who maximizes expected reward4–11. Although plausible 
neural representations have been proposed for the combination of 
probabilistic information12,13, little is known about representations 
of pdfs that capture visuo-motor error14.

In the framework of Bayesian decision theory2, the visuo-motor 
uncertainty associated with a possible reaching movement is sum-
marized as a pdf on possible movement outcomes in space or time. 
The pdf is often close to Gaussian in form (Fig. 1a) and is centered on 
the point that the subject aims for. Suppose that the subject can gain 
a reward if she reaches to and hits a small target. A plot of the reward 
associated with each possible outcome is called the gain function G(x), 
and here is either 0 (outside the target) or the promised reward (inside 
the target). If the subject aims at location a, then her expected gain 
on each attempt would be EG = ∫G(x)f(x − a)dx, the integral of the 
product of the pdf with a gain function2. In Figure 1b, we illustrate 
the computation of expected gain when the subject aims at the center 
of the target.

The computation involved is potentially demanding, and a possible 
way to reduce the computational load is to use additive weighted 

mixtures of a fixed set of basis distributions b1(x), …, bn(x) to approxi-
mate the objective pdfs15 
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Two examples of a discrete mixture distribution are shown in  
Figure 1a, the first based on non-overlapping uniform basis distri-
butions and the second on Gaussian distributions that all share a 
common variance, but differ in location. The Gaussian basis func-
tions overlap, but—if they are sufficiently widely separated—they are 
effectively orthogonal for our purposes. We refer to such mixtures 
of a finite number of orthogonal or nearly orthogonal functions as 
discrete mixture distributions.

In three experiments, we estimated the internal pdfs used by human 
subjects in planning speeded reaching movements and compared 
them with their objective pdfs. We found that subjects’ choice behavior  
was better described by (Bayesian optimal) decisions based on a mix-
ture of discrete distributions than by single Gaussian distributions  
or other unimodal distributions, even though their actual motor 
error distributions were close to Gaussian, and that the mixture of  
non-overlapping uniform distributions (U-mix; Fig. 1a) outper-
formed other discrete mixture distributions, including mixture of 
Gaussians. We found that the number of basis functions in the discrete 
mixture representation needed to account for human performance  
is small, roughly 2–6.

Discrete weighted mixture representations can speed computation 
of expected gain: if the expected gain for each basis function can be 
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mixtures of orthogonal basis distributions
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In many laboratory visuo-motor decision tasks, subjects compensate for their own visuo-motor error, earning close to  
the maximum reward possible. To do so, they must combine information about the distribution of possible error with values 
associated with different movement outcomes. The optimal solution is a potentially difficult computation that presupposes 
knowledge of the probability density function (pdf) of visuo-motor error associated with each possible planned movement.  
It is unclear how the brain represents such pdfs or computes with them. In three experiments, we used a forced-choice  
method to reveal subjects’ internal representations of their spatial visuo-motor error in a speeded reaching movement. 
Although subjects’ objective distributions were unimodal, close to Gaussian, their estimated internal pdfs were typically 
multimodal and were better described as mixtures of a small number of distributions differing only in location and  
scale. Mixtures of a small number of uniform distributions outperformed other mixture distributions, including mixtures  
of Gaussians.
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computed, the expected gain associated with alternative targets or 
movement plans will be reduced to weighted linear summation of 
the contributions from each basis distribution. The use of mixtures 
of distributions is also relevant to Bayesian model averaging, models 
based on mixtures of experts and hierarchical formulations of motor 
control (for example, hierarchical MOSAIC16).

Each experiment consisted of two phases, training and choice.  
The results of the training phase allowed us to estimate subjects’ 
objective pdfs and the results of the choice phase allowed us to  
estimate their internal pdfs.

Figure 2 illustrates the task and design of experiment 1. Human 
subjects were first trained to repeatedly reach to a specific target on 
the screen within a time limit (Fig. 2a). Typically, their endpoints had 
a distribution close to bivariate Gaussian (Fig. 2b).

In a second phase, subjects viewed two virtual targets differing in 
width and configuration and chose the target they preferred to try later 
for monetary rewards (Fig. 2c). We assumed subjects’ choice was gen-
erated by a softmax function based on their estimates of the expected 
utilities of the two targets (Online Methods), which, under our reward 
structure (hit = fixed reward, miss = nothing), were reduced to the prob-
abilities of hit. Thus, subjects’ choices were determined by their internal 
pdfs, integrated over the target regions (see Fig. 2d for an illustration).  

Conversely, we could reconstruct approximations of subjects’  
internal pdfs from their choices17.

The targets were vertically elongated so that only horizontal error 
affected reward. On each trial, one target was a triple (three identical, 
equally gapped rectangles) and the other was a single (one rectangle). 
We chose the triple target as a convenient way to explore the distribu-
tion of probability mass in the tails of the internal pdfs by varying the 
gap between the outer rectangles and the inner (Fig. 2e).

RESULTS
Experiment 1: objective pdf
We ignore the irrelevant vertical direction and describe only the hori-
zontal statistics. Subjects’ endpoints in the reaching task (Fig. 2b) had 
a Gaussian-like distribution that was symmetric around the target 
center. The distribution of all but one subject’s visuo-motor error 
(endpoints’ deviation from the mean endpoint) had a kurtosis higher 
than that of Gaussian (by 0.04–1.78, median of 0.44), indicating a 
more peaked center or heavier tail. We modeled each subject’s visuo-
motor error as a scaled Student’s t distribution with a scale parameter 
and a shape parameter (Online Methods), for which the Gaussian  
distribution is a limiting case. The t model captured individual  
subjects’ visuo-motor error in s.d. (Pearson’s r = 1.0, P < 0.001) and 
kurtosis (Pearson’s r = 0.82, P = 0.004). We refer to the t distribu-
tion estimated in a subject’s reaching task as the subject’s objective  
visuo-motor error distribution, or objective pdf.

Experiment 1: internal pdf
We first visualized subjects’ internal pdfs from their choices, assuming  
a Gaussian-process prior (Online Methods), which results in a 
smoothed estimate of the pdf; it assumes only a weak correlation 
between adjacent locations on the pdf and allows for the possibility 
that the underlying distribution is multimodal.

It should be noted that the resulting fits are effectively smoothed 
and any abrupt changes in the pdf may be lost in this analysis. In 
addition, because of the choice of stimuli in experiment 1, we could 
not reliably estimate the probability density in a small interval at the 
center of the pdf (we removed this limitation in experiment 2, Online 
Methods) and we replaced it by a horizontal bar.

For the single subject’s data shown in Figure 3a, there appeared to 
be multiple discrete modes (peaks) or possibly steps. The presence 
of such modes is inconsistent with the unimodal form of the objec-
tive pdf (that is, t distribution). Results for all subjects are shown in 
Supplementary Figure 1.
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Figure 1 Computation of expected gain. (a) Three examples of pdfs: 
Gaussian distribution (blue), an mG-mix mixture distribution (gray) and a 
U-mix mixture distribution (green). (b) The computation of expected gain 
(EG) for each. G(x) denotes the gain function and f(x) denotes the pdf. 
The areas of the shaded regions in the plots of G(x) × f(x) correspond to 
EG = ∫G(x)f(x)dx.
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Figure 2 Task and design of experiment 1. (a) The reaching task. Subjects 
were required to hit the target (blue regions) at the center of the screen 
within 400 ms for each of 300 trials. (b) One subject’s visuo-motor error 
distribution in the reaching task. Left, the endpoint of each trial (blue dot) 
is marked on the target (gray regions). Right, the distribution of horizontal 
visuo-motor error fits to a scaled Student’s t distribution. (c) Time course of 
the choice task. On each trial, subjects chose between a triple (an array of 
three rectangles) and a single (one rectangle) as to which target that they 
perceived to be easier to hit. The subject did not reach to hit the target; she 
only chose a preferred target. (d) Rationale of the choice task. We illustrate 
two extreme cases. Left, when the subject’ internal pdf of visuo-motor error 
is a uniform distribution that is wide enough to contain the whole triple, the 
subject would be indifferent (denoted by ~) between the two targets when 
the width of the single equals the total width of the three rectangles in the 
triple. Right, in contrast, when the subject’s model is a uniform distribution 
that covers only the central rectangle of the triple, the equivalent single 
would be merely as wide as the central rectangle. (e) Design of the choice 
task. 12 different triples were used, for each of which, the width of its 
paired single was adjusted by an adaptive procedure for 70 trials.
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The results of this analysis suggest, but do not demonstrate, that 
subjects’ internal pdfs are multimodal. We used a model comparison 
procedure to further explore the form of the internal pdf.

We compared seven different classes of models of the internal pdf: 
three unimodal distributions, a mixture distribution that is always 
unimodal and three mixture distributions that could be multimodal 
(Online Methods). The Akaike information criterion with a correc-
tion for sample sizes (AICc)18,19 was used for model selection.

Unimodal distributions. The first and the baseline model was the 
Gaussian model, whose variance was fitted as a free parameter. The 
second model was the t model, whose scale and shape parameters 
were free. In a third model, the linear-decay model, we assumed 
that the probability density functions in subjects’ internal pdfs were  
continuous, but took the simple linear form of a triangular distribu-
tion, with variance as a free parameter.

Mixture distributions. We next considered four classes of mix-
ture distributions (including the unimodal mixture distribution). 
One class is the linear combination of multiple uniform distribu-
tions (that is, U-mix) whose ranges abut one another. We assumed 
symmetry for the current problem: a U-mix model with n compo-
nents was composed of n pairs of uniform distributions symmetric 
around 0 (that is, two symmetric uniform distributions were counted 
as one component). The U-mix distributions shown in Figure 1, for 
example, had two components. For each subject, we constructed 
five levels of U-mix models with increasing number of components,  

denoted U1–U5, and fit them to the subject’s choices. The ranges  
(spatial extent) and weights (heights of the components) of the  
uniform components were free parameters.

Two classes of mixtures of Gaussian distributions were modeled: 
the vG-mix model is a linear combination of Gaussian distributions 
with the same mean but different variances and the mG-mix is a 
linear combination of Gaussian distributions with the same variance,  
but different means. The mean(s), variance(s) and weights of the 
Gaussian components were fitted as free parameters. The vG model, 
described among mixture distributions for convenience, was classified 
as a unimodal model.

A vG-mix or mG-mix with n components had the same number 
of free parameters as a U-mix with n components. Similar to U-mix, 
we constructed five levels of vG-mix and mG-mix and obtained the 
best-fit vG-mix and mG-mix. Last, we considered a mixture model 
composed of piecewise linear components, denoted as L-mix.

The pdf estimated from each model is plot-
ted for one subject in Figure 3b–h. The AICc 
differences between the baseline (Gaussian) 
and the other six models (summed over the 
nine subjects) are shown in Figure 3i. Two 
conclusions can be reached. First, all of the 
mixture distribution models fitted better to 
subjects’ choice patterns than any of the uni-
modal distributions. The unimodal distribu-
tion models tended to smooth over any abrupt 
changes in subjects’ choice patterns, whereas 
the mixture distribution models, with their 
multiple discrete modes or steps, were able to 
capture them (Supplementary Fig. 2).

Second, the U-mix model outperformed 
the other mixture models. According to the 
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Figure 3 Internal pdfs in the choice task of experiment 1. (a) Non-
parametric visualization of the internal pdf for one subject. Green-shaded 
regions denote ±s.e.m. x is in the unit of the subject’s horizontal s.d. 
estimated from the reaching task. The gray-shaded central range of  
[−0.6, 0.6] could not be reliably estimated in experiment 1 (Online Methods) 
and the visualization therefore gives information about the pdf only away 
from the origin. Two regions of interest are marked by red circles. The 
visualizations for all subjects are shown in Supplementary Figure 1.  
(b–h) Internal pdfs estimated from different models for the same subject. 
(i) AICc difference between the Gaussian model and the other six models 
summed over the nine subjects. The unimodal models (including vG-mix) 
and mixture models are coded in light gray and dark gray, respectively. 
Positive difference indicates better fit. LD denotes linear decay.  
(j) Number of subjects best fit by each U-mix model.
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Figure 4 Model fits of all subjects’ internal pdfs 
in experiment 1. (a) mG-mix model. (b) U-mix 
model. Each panel shows the pdf of one subject. 
x is presented in the unit of the subject’s 
horizontal s.d. estimated from the reaching  
task. Subjects are shown in the same order as  
in Supplementary Figure 1.
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group-level Bayesian model selection20, of the seven models, the 
probability for the U-mix model to be the best model was 65.7%, the 
probability for Gaussian was 1.3%, the probability for lineary decay 
was 1.0%, the probability for t was 1.0%, the probability for vG-mix 
was 1.3%, the probability for mG-mix was 28.0% and the probability 
for L-mix was 1.7%.

The underlying Bayes factors provide only weak evidence 
favoring the uniform mixture model over the Gaussian mixture 
model. However, in our third experiment (when considering two- 
dimensional basis functions), we found stronger evidence for uniform 
over Gaussian mixtures (see below).

Model fits of all subjects’ internal pdfs are shown in Figure 4 for 
the mG-mix and U-mix models. The U-mix models were evidently 
discrete mixture representations, as defined in above. The ‘runner up’ 
mG-mix models were also discrete mixture representations: the basis 
pdfs in the mG-mix models had, on average, an overlap of only 8.0% 
in probability density (Online Methods); that is, they were close to 
non-overlapping, orthogonal.

According to AICc comparisons, the U-mix models that best  
fit subjects’ choices contained only a small number of components 
(Fig. 3j): all of the subjects were best fit by U2–U4. For example, the 
best-fit U-mix model for one subject shown in Figure 3h was U3.

Experiment 2
We wanted to show that the discrete mixture representation of  
visuo-motor uncertainty was not somehow a result of the particular 
stimuli we used in experiment 1. Could the triples, in particular, have 
somehow led the subject to choose a discrete mixture representation 
that she might otherwise never have made use of?

In a second experiment, we trained subjects to touch a line within 
a time limit (Fig. 5a). The distribution of each subject’s endpoints 
was close to Gaussian. Instead of an all-or-none reward, the amount 
subjects received on each trial could be any integer between 0 and 
100, decreasing with the distance of their endpoint to the target line. 
In the subsequent choice phase, subjects chose between a central 
rectangular region and a peripheral rectangular region (Fig. 5b and 
Online Methods).

The analyses of experiment 2 were similar to those of experiment 1,  
except that the design of the experiment allowed us to include  
asymmetric distributions among the candidates for subjects’ internal 
pdfs and there was no restriction on estimating the pdf near its center 
as there was in experiment 1 (Online Methods). The visualization 
and model fits for one subject are shown in Figure 5c–h (also see 

Figure 5 Experiment 2. (a) The reaching task.  
Left, the task. The task for experiment 2 was  
the same as that for experiment 1, except that  
a horizontal line was used as the target. Right,  
the endpoints for one subject. (b) The choice  
task. The task for experiment 2 was similar  
to that for experiment 1, but each pair of  
targets consisted of a rectangle on the line and  
a rectangle off the line. (c) Non-parametric  
visualization of the internal pdf for one subject.  
Shaded regions denote ±s.e.m. x is in the unit  
of the subject’s vertical s.d. estimated from the  
reaching task. (d–h) Internal pdfs estimated  
from different models for the same subject.  
(i) AICc difference between the Gaussian model and the other four  
models summed over the ten subjects. The unimodal models (including 
vG-mix) and mixture models are coded in light gray and dark gray, 
respectively. Positive difference indicates better fit. (j) Number of  
subjects best fit by each U-mix model.

Supplementary Figs. 3 and 4). Again, all the mixture models were 
superior to the Gaussian and the U-mix model was superior to the 
other mixture models in AICc (Fig. 5i). Not only the U-mix models, 
but also the mG-mix models, were discrete mixture representations: 
the basis pdfs in the mG-mix models had, on average, an overlap of 
only 9.2% in probability density. They were close to non-overlapping, 
orthogonal. According to group-level Bayesian model selection20, 
among the five models, the probability for the U-mix model to be 
the best model was 63.4%; the probability for Gaussian was 0.7%, the 
probability for vG-mix was 22.3%, the probability for mG-mix was 
12.7% and the probability for for L-mix was 0.9%. The best-fit U-mix 
models for most subjects were U4–U6 (Fig. 5j).

Experiment 3
For experiment 3, we applied the tests developed above to the two-
dimensional choice data of ref. 21. Its task and design was the same 
as that of experiment 1 with the following exceptions (Fig. 6a–c). The 
target of the reaching task was a circle and subjects’ visuo-motor error 
had a bivariate Gaussian distribution. The targets in the choice task 
were a rectangle and a circle.

We modeled subjects’ internal pdfs in the horizontal and vertical  
directions separately and considered the Gaussian, vG-mix, mG-mix, 
L-mix and U-mix models (Online). As in experiments 1 and 2, the 
mixture models were superior to the Gaussian model and the U-mix 
model was superior to the other mixture models in AICc (Fig. 6d). Not 
only the U-mix models, but also the mG-mix models (Supplementary 
Figs. 5 and 6), were discrete mixture representations; the basis pdfs 
in the mG-mix models had, on average, an overlap of only 17% 
in probability density. According to group-level Bayesian model  
selection20, of the five models, the probability for the U-mix model  
to be the best model was 97.6%, the probability for Gaussian was 
0.02%, the probability for vG-mix was 0.3%, the probability for  
mG-mix was 0.5%, the probability for L-mix was 1.6%.

For a mixture model that had nx components in the horizontal 
direction and ny components in the vertical direction, define its 
number of components as ( )/n nx y+ 2. The best-fit U-mix model for 
most subjects had 2–3 components (Fig. 6e).
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DISCUSSION
We estimated human subjects’ internal model of their own visuo-
motor error in a speeded reaching task and compared it with their 
objective visuo-motor error. Subjects’ actual visuo-motor error distri-
butions (objective pdfs) were in all cases unimodal, close to a Gaussian 
in many cases and close to a t-distribution in the remainder. However, 
the distributions implicit in their choices (internal pdfs) were very 
different from their actual distributions.

We found, first of all, that multimodal mixture distributions  
(for example, U-mix, mG-mix) provided a better fit to subjects’  
choice patterns than any single Gaussian or the alike. Second, of  
the mixture models tested, a model consisting of a mixture of non-
overlapping uniform distributions with two to six nonzero steps  
performed best.

Both results are unexpected. The first and broader conclusion—
that subjects’ internal pdfs were mixtures of basis distributions—is 
well supported by our data. Moreover, the basis distributions in the 
mixtures either had no overlaps (for example, U-mix) or just slight 
overlaps (for example, mG-mix). We refer to such mixtures of local 
distributions as discrete mixture representations. The subjects’  
representations of their own visuo-motor error were discrete.

It is less clear what the form of the basis distributions was: the 
mG-mix fits came close to the U-mix in both goodness-of-fit and 
overall appearance. Although fits to the data favored uniform basis 
distributions over Gaussian, there could well be a third candidate that 
would dominate both.

There are two possible advantages of using uniform rather than 
Gaussian mixtures to represent probability mass. First, we can ‘tile’ 
the space of events in an orthogonal (sparse) fashion, without any 
bias to a particular location. Second, the probability assigned to 
each event (here, endpoint) depends only on the tile it is in. That is,  
we can estimate the constant probability density of each tile by simply 
counting events in the tile.

Relationship to previous measures
A few studies have reconstructed human subjects’ representation 
of sensory probability distributions based on their decisions. One 
study found that subjects’ internal pdf of a Gaussian prior distribution 
closely followed the objective prior (Fig. 2d of ref. 7), which seem-
ingly disagrees with a discrete mixture representation of probability 
distributions. However, this study7 showed is that subjects computed 
a weighted average of the mean of a prior distribution and the mean 
of a likelihood. Although such averaging is consistent with Bayesian 
inference based on Gaussians, it is unclear how to infer from their data 
that subjects actually maintained and multiplied specifically Gaussian 
distributions22. Notably, a second condition in the same study  
demonstrated that subjects successfully represented a bimodal prior 
distribution, a capability that is, broadly, consistent with our finding 
that the brain employs mixture distributions. Of course, a formal test 

of whether behavior in such a setting is best fit by particular forms  
of mixture, such as our U-mix, will be needed in the future.

One surprising feature of the discrete mixture representation that 
we observed was that it was multimodal, although the true distribu-
tion was unimodal. Although this outcome was unexpected, it is not 
completely unprecedented: subjects’ representation of temporal prior 
distributions in a previous study (Figs. 7–9 in ref. 23) appeared to have 
more than one mode.

Discrete representation and near-optimal motor decisions
Our finding that subjects’ internal pdfs of their own visuo-motor 
error distribution were discrete, thereby deviating systematically 
from the objective distribution, does not necessarily conflict with 
near-optimal human performance in previous studies4–10 (see ref. 11  
for an example of a binary choice task). Many tasks may simply 
be insensitive to systematic deviations in subjects’ internal pdfs.  
For example, a previous study21 found that a virtual subject with a 
Gaussian error distribution, but who mistakenly assumes it is a uni-
form distribution of the same variance, would still be able to achieve 
near-optimal performance in a previously described visuo-motor 
decision task8. A discrete mixture representation with two to six 
nonzero steps, as we found in our experiments, enables even better 
approximations to the objective distribution and can therefore lead 
to near-optimal performance as well.

Simplifying probabilistic calculation
Psychologists and neuroscientists modeling biological computation 
have encountered the computational problems that arise when manip-
ulating high-dimensional or continuous distributions in many guises. 
Broadly speaking, tractable solutions require approximating the exact 
computation with some simpler, sparser form. The discrete mixture 
representation that we propose is one example, and shares its essential 
feature of sparseness with many other approaches, such as approxi-
mating distributions with a reduced rank form24 or a kernel density 
estimator25, with Monte Carlo approximations that substitute a few 
samples for a random variable26–29, or with the use of linear models 
to approximate surface spectral reflectance density functions30. Given 
that these approaches share many essential similarities, it is possible 
that all arise from the same neural solution to complexity.
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Figure 6 Experiment 3. (a) The reaching task. Left, the task. The task for 
experiment 3 was the same as that for experiment 1, except that a circular 
target was used. Right, the endpoints for one subject. (b) The choice task. 
The task for experiment 3 was the same as that for experiment 1, except 
that each pair of targets was a rectangle and a circle. (c) Design of the 
choice task. Ten different rectangles were used; for each, the radius of  
its paired circle was adjusted by adaptive procedures for 100 trials.  
(d) AICc difference between the Gaussian model and the other four 
models summed over the 18 subjects. The unimodal models (including 
vG-mix) and mixture models are coded in light gray and dark gray, 
respectively. Positive difference indicates better fit. (e) Number of 
subjects best fit by each U-mix model.
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An important question for future work is whether the U-mix (or 
other mixture) distributions that we observed are the only internal 
representations of the distribution of visuo-motor error available to 
the visuo-motor system or whether they are transient representations, 
derived from a more accurate representation, that vary with the task 
imposed. That is, the neural system could maintain a high-resolution 
representation of visuo-motor error, but uses simplified representa-
tions to carry out specific computational tasks, just as most common 
programming languages use a variety of numerical representations.

Discrete representation as explanation for decision biases
The U-mix representation may be used to approximate any arbitrary 
probability distribution. Using a sensorimotor decision task, a pre-
vious study31 found, for skewed error distributions, a deviation of 
subjects’ aim point from the mean toward the median. The authors31 
estimated subjects’ internal loss functions that would lead to this 
bias. However, in a close examination of their data, we noticed an 
unexplained away-from-median bias (that is, toward the longer or 
fatter tail) in the middle range of skewness—the U-shaped curve 
trends below zero. The coexistence of the toward-median and away- 
from-median biases could not be explained by any of the loss  
functions proposed previously31 and it is not obvious whether there 
exists such a loss function that is non-negative.

However, if we assume subjects had a quadratic internal loss  
function32–34, but employed a discrete mixture representation  
(U-mix) of their error distribution, we can reproduce the pattern 
of the previous study’s data31, both the toward-median and away- 
from-median biases, with satisfying precision (Fig. 7 and Online 
Methods). Intuitively, the two opposite biases stem from two com-
plementary effects. First, discretization trims the skewed tail outside 
the discrete range, leading to the underweighting of large errors. 
Second, discretization homogenizes the density in each tile, effectively  
moving the probability mass away from the shorter tailed side toward 
the longer tailed side.

An mG-mix could lead to a similar effect as U-mix (Supplementary 
Fig. 7). However, given that a mixture of two Gaussians is exactly the 
error distribution used previously7,31, we had to choose a mixture of 
two Gaussians that differed from the actual mixture to get the pattern 
of biases present in the human data.

The discrete mixture representation that we propose for sensorimotor  
error can serve as a general framework for human representation of 
probability distributions and can potentially explain a range of known 
biases in human choices. For example, humans exhibit a skewness  
preference, a well-documented phenomenon in economics and 
finance35–38: they prefer reward distributions with positive skewness 
to those with zero or negative skewness when the mean and variance 
of the distributions are the same, exhibiting the pattern we found in 
previous data31, which was consistent with a U-mix representation.

METHODS
Methods and any associated references are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
ethics statement. The experiments were approved by the University Committee 
on Activities Involving Human Subjects of New York University. Informed  
consent was given by each subject before the experiment.

Subjects. There were, respectively, 10 (1 male), 12 (4 male) and 18  
(8 male, 4 left-handed) subjects, aged 18–40, that participated in the three 
experiments. All subjects used the index finger of their dominant hand for  
the reaching movement. Subjects received $12 per hour plus a performance-
related bonus.

Apparatus and stimuli. Stimuli were presented in a dimly lit room on a 17-inch  
(33.8 × 27 cm) Elo touch screen mounted vertically on a Unistrut frame, controlled 
using the Psychophysics Toolbox39,40. Subjects were seated at a viewing distance of  
30 cm. In the reaching task, the starting position, a stabilized key, was 28 cm 
away in depth and 20.5 cm below the screen center. The touch screen recorded 
the endpoints.

Procedure and design. The three experiments had common task structures: 
reaching and choice. The procedure and design of experiment 1 is described 
below, as are the differences in experiment 2. The methods used for experiment 3  
are described elsewhere21.

experiment 1: reaching. The reaching task served to reveal each subject’s  
objective visuo-motor error distribution to us and to the subject. Subjects were 
required to touch a target at the center of the screen (with a horizontal and ver-
tical random jitter within ±1 cm) within 400 ms. The target (Fig. 2a) was con-
sisted of three vertical rectangles: one 0.4-cm-wide central rectangle and two 
0.2-cm-wide flankers, separated by 0.13-cm-wide gaps. They were 5 cm high, 
therefore large enough to render subjects’ vertical errors inconsequential (only 
0–5.2%, median 0.70% of subjects’ endpoints fell outside the vertical boundaries).  
Only the horizontal errors of the endpoints would be of interest to us and to 
the subjects. Subjects’ constant errors (mean deviation from the center) were 
negligible (0.0065–0.45 [median 0.18] of the s.d.).

Subjects held down the starting key to trigger the next target. The timer started 
when they released the key. If they reached the screen in the time limit, a dot 
would appear on the target to echo the endpoint. An additional message indicated 
hit, miss or time-out.

There were 50 warm-up trials and 300 formal trials. Subjects received  
financial rewards for hitting the target. At the end of the task, eight bonus  
trials would be randomly drawn from the 300 reaching trials they had  
performed. Each bonus trial delivered $1 for hit, zero for miss or incurred a 
penalty of $2 for time-out.

experiment 1: choice. The choice task was designed to estimate the visuo-motor 
error distribution subjects assumed in planning their own reaching movements. 
Subjects chose between two targets, selecting the one they judged to be easier 
to hit (Fig. 2c). Subjects were instructed to imagine hitting the targets from the 
same starting position and under the same time limit as they had in the earlier 
reaching task, but no actual reaching attempts were allowed.

On each trial, one target was a row of three equally spaced, identical  
rectangles (triple); the other target was a single rectangle (single). Each target 
was presented at the center of the screen for 0.5 s and they were separated by a 
duration of 0.5 s. Subjects were prompted to respond, “Which is easier to hit? 
1st or 2nd?” by key press.

The heights of the targets were the same as those of the reaching task. The 
widths of the targets were tailored for each subject based on the s.d. of her hori-
zontal visuo-motor error, σ0, estimated from the reaching task (0.23–0.38 cm 
across subjects). There were 12 combinations of Triples (Fig. 2e), whose width of 
rectangles was σ0, 1.5σ0 or 2σ0, and whose gap widths were 0.4, 0.6, 0.9 or 1.35× 
the width of the corresponding rectangles. The width of the single paired with 
each triple was adjusted by a 1-up/1-down staircase procedure that terminated 
after 70 trials. All 12 staircases were interleaved.

The 12 × 70 = 840 formal choice trials were preceded by 20 warm-up trials. Trials 
were self-initiated by key press. Similar to the reaching task, a monetary incentive 
was applied to encourage subjects to choose the target associated with a higher 
probability of hit. Subjects were instructed that, at the end of the experiment,  

eight targets would be randomly selected from those they had preferred in the  
formal choice trials. They would attempt to hit these bonus targets and be 
rewarded for hits just as in the reaching task.

experiment 2. Three settings were different from experiment 1. First, the tar-
get in the reaching task was an 8-cm-long line (Fig. 5a) that delivered graded 
instead of all-or-none rewards. For any trial completed within the time limit 
and the span of the line, subjects received a reward between 100 and 0 points 
(5,000 points = $1), decreasing as a logistical function of the endpoint-to-line 
distance. Second, in the choice task subjects chose between two rectangular 
regions (Fig. 5b), one on the target line (central), the other off the target line 
(side). Subjects were instructed to choose the region that was more likely to catch 
their endpoints in the previous reaching task. Two trials would be selected at 
random as bonus trials at the end of the experiment, for each of which subjects 
could win US$5 if they were correct. Third, staircase procedures were not used. 
Denote σ0 as the s.d. of the subject’s vertical visuo-motor error (0.45–0.71 cm 
across subjects). The central had 5 possible heights, 0.2σ0, 0.4σ0, 0.6σ0, 0.8σ0 
σ0. The side had six possible heights, 0.4σ0, 0.8σ0, 1.2σ0, 1.6σ0, 2σ0 and 2.4σ0, 
and must be greater in height than its paired central. The side could be above or 
below the target line by ten possible distances, 0.25σ0, 0.5σ0, 0.75σ0, …, 2.5σ0. A 
full combination of these conditions times two repetitions resulted in 960 trials, 
presented in random order.

exclusion of trials or subjects. Reaching. Time-out trials, 2.7–15% (median 4.3%) 
for experiment 1, 2.6–27% (median 9.2%) for experiment 2, 1.3–21% (median 
9.0%) for experiment 3, and outlier trials beyond 8σ0 were excluded. In experi-
ment 2, endpoints outside the ends of the target line (no more than one trial for 
each subject) were also excluded; time-out trials and outside trials were replaced 
during the experiment.

Choice. In experiment 1, one subject was excluded due to violation of domi-
nance: the subject consistently preferred the single even when the single could be 
contained in the triple. In experiment 2, two subjects were excluded. One of them 
chose the central in 99% trials; the other chose the upper region in 97% trials.

discrete mixture representations. A discrete mixture representation is speci-
fied by first designating a partition of part of the real line a0 < a1 < a2 < … < an. 
Each interval of the partition [ai − 1, ai] is paired with a basis distribution fi(x) as 
follows. Let ci = (ai + ai − 1)/2 be the location of the interval and si = (ai − ai − 1)/2 
its scale. Then for some choice of seed distribution f(x) that is nonzero outside 
the interval [−1, 1] define 
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is a discrete mixture representation based on the seed distribution f(x) and  
the partition a0 < a1 < a2 < … < an.

U-mix is an example of a discrete mixture representation based on a  
uniform seed distribution. For convenience, we treat mixtures of Gaussians 
as a discrete mixture representation with the assumption that almost all of 
the probability density is confined to one interval of the partition: we ignore  
the overlap.

data fitting and model comparison. All the data fitting procedures  
were conducted on the individual level using maximum likelihood estimates.  
We used fminsearchbnd (J. D’Errico), a function based on fminsearch in  
MATLAB (MathWorks) to search for the parameters that minimized minus  

(2)(2)

(3)(3)
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log likelihood. To verify that we had found the global minimum, we repeated  
the search process using different starting points.

equivalent width (radius). In experiment 1 (experiment 3), for each specific  
triple (rectangle), subjects’ probability of choosing the single (circle) was  
modeled as a two-parameter (location and slope) sigmoidal psychometric 
function of the logarithm of the width of the single (the radius of the circle).  
The psychometric functions of the 12 triples (10 rectangles) were assumed to 
have different locations but the same slope. The equivalent width (radius) cor-
responded to the point on the psychometric function where the probability of 
choosing the single (circle) was 0.5.

linking subjects’ internal pdfs to their choices. We assume a specific subject’s 
choice between the two targets (T1 and T2) on a specific trial is generated as 
follows. First, probabilities of hit are computed for the two targets based on the 
subject’s internal pdf, which, in the one-dimensional case, is 

p f x dx

p f x dx

T

T

1
1

2
2

=

=

∫

∫

( )

( )

where f(x) denotes the internal pdf. Subjects would receive a fixed positive value 
(whose utility is denoted v) for hit and 0 for miss. The expected utilities for the 
two targets are thus p1v and p2v.

The subject’s choice, T1 or T2, is generated as a Bernoulli random variable, with 
the probability of choosing T2 determined by p1 and p2 following the normalized 
expected utility model41 in the form of a softmax function 

Pr( ) ( )/( )T
e p v p v D2 1 2

1

1
=

+ − t

where τ > 0 is a temperature parameter determining the randomness of the choice, 
and D = p1(1 − p2)v + p2(1 − p1)v is a normalization term. Note that v cancels  
out in the equation. For each distribution model (for example, Gaussian, U-mix), 
we fit Pr(T2) to subjects’ choices to estimate its free parameters and τ.

Visualization of subjects’ internal pdf. For each subject, we visualized the internal 
pdf implicit in the subject’s choices using a Bayesian inference procedure as follows. 
First, we generated 1,000,000 pdfs by sampling from a Gaussian-process prior42 in 
log space and normalizing each sample (to guarantee the area under any pdf equals 
one). The length scale of the Gaussian process was 0.3σ0. In experiment 1, we 
required the pdfs to be symmetric around 0 and spanned the stimuli range [−5.7σ0, 
5.7σ0]. We arbitrarily set the densities within the central range of [−0.6σ0, 0.6σ0] 
to be constant because the central width of the smallest triple was σ0, leaving the 
central densities underdetermined. In experiment 2, asymmetry was allowed and 
the pdfs spanned the stimuli range [−4.9σ0, 4.9σ0]. Second, for each sample pdf, 
we computed its likelihood of generating the subject’s choices. The temperature 
parameter τ in equation (5) was chosen to be the same as the subject’s τ fitted in 
the Gaussian model. Third, with each sample pdf ’s likelihood serving as its weight 
in importance sampling, we obtained the posterior distribution of the subject’s 
internal pdf and accordingly its mean ±s.e.m. (that is, 68% confidence interval).

t model. The probability density function is in the form of a scaled Student’s  
t distribution 
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where κ > 0 is a scale parameter and ν ≥ 4 is a shape parameter (x/κ  
has a standard Student’s t distribution of v degrees of freedom), Γ(.) is  

(4)(4)

(5)(5)

(6)(6)

the gamma function. The Gaussian distribution is a limiting case of  
the scaled Student’s t distribution with ν → .

linear-decay model. The probability density function is in the form of a trian-
gular distribution 
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where ξ > 0 is the free parameter, denoting the boundary of the regions with 
nonzero probability density.

Mixture models. Denote wi as the weight for the i-th component (or pair of 
components) of an n-component mixture model, which satisfies 0 ≤ wi ≤ 1 and
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i

n
=

=
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The Gaussian model is a special case of mixture models vG-Mix or  
mG-Mix with n = 1.

vG-mix is a linear combination of Gaussian distributions with the same mean, 
but different variances 
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where σi and wi are free parameters, µ = 0 in experiment 1 and is a free  
parameter in experiment 2.

mG-mix is a linear combination of Gaussian distributions with the same  
variance but different means. In experiment 1, the Gaussian distributions are in 
pairs symmetric around 0 
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where µ1 = 0, µi (i > 1), σ and wi are free parameters. In experiment 2,  
symmetry is not assumed 
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where µi, σ and wi are free parameters.
L-mix is a distribution whose pdf is a piecewise linear function. In experiment 1,  

the distribution is symmetric around 0 
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where bi > 0, hi > 0 are free parameters except that b0 = 0, hn = 0. In experiment 2,  
symmetry is not assumed 
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where bi, hi > 0 are free parameters except that h0 = 0, hn = 0. bi and hi satisfy 
∫f(x|bi, hi)dx = 1.

U-mix is a linear combination of uniform distributions that are adjacent  
to each other. Let u(a, b) denote the pdf of the uniform distribution on the  
range [a, b]. In experiment 1, the uniform distributions are in pairs symmetric 
around 0
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where θ1 = 0, 0 ≤ θ2 ≤ θ3 ≤ … ≤ θn + 1 and wi are free parameters. In experiment 2,  
symmetry is not assumed 
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where θ1 ≤ θ2 ≤ … ≤ θn + 1 and wi are free parameters.

Bivariate gaussian model. The probability density function of the bivariate 
Gaussian model has the form 
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where σx and σy are free parameters. The probability of hitting a specific target 
is computed as the integral of Ψ(.) over the region of the target.

one-dimensional–times–one-dimensional assumption. We considered 
the possibility that subjects might model their two-dimensional errors as  
two independent one-dimensional distributions and that they then com-
puted the probability of hitting a two-dimensional region as the product of  
probabilities of hitting the two one-dimensional ranges. This one-dimensional–
times–one-dimensional assumption, when applied to the Gaussian model,  
led to a much higher goodness-of-fit to subjects’ choices in experiment 3 than 
the bivariate Gaussian model—the median AICc difference across subjects  
was 22. In the model comparison of experiment 3, the Gaussian and all  
mixture models were based on the one-dimensional–times–one-dimensional 
assumption.

two-dimensional mixture models. A two-dimensional mixture model (vG-mix, 
mG-mix, L-mix or U-mix) in experiment 3 consists of two one-dimensional 
mixtures separately for the horizontal and vertical directions, f(x) and g(y), mod-
eled in the same way as the corresponding models in experiment 1. The number 
of components, n, is counted as the mean of components in the two directions,  
( )/n nx y+ 2. Only models with |nx − ny| ≤ 1 were considered. The two-dimensional 
Gaussian model is a special case of two-dimensional mixture models vG-Mix or 
mG-Mix with n = 1.

(12)(12)

(13)(13)

(14)(14)

(15)(15)

The probability of hitting a rectangular target of width 2a and height 2b is 
computed as the product of two one-dimensional probabilities 

Pr( ) ( ) ( )T f x dx g y dyrect a
a

b
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= ( )



− −∫ ∫

The probability of hitting a circular target of radius R is also computed as the 
product of two one-dimensional probabilities 
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1≤ ≤h

is a discounting parameter for the radius so that the probability of hitting the 
circle is no less than the probability of hitting its inscribed square and no greater 
than the probability of hitting its circumscribed square.

overlap of basis distributions in probability density. For an mG-mix pdf with 
n Gaussian components (n > 1), we divided the spatial axis into n intervals using 
the middle points of the centers of adjacent components. That is, each interval 
was owned by one and only by one Gaussian basis distribution. The probability 
mass in each interval also came from the tails of other Gaussians. We computed 
the percentage of probability mass contributed by the owner Gaussian for each 
interval and averaged the percentage across intervals. 100 minus the resulting 
percentage was defined as the percentage of overlap.

U-mix simulation for ref. 31. The subject’s task was to use her finger to control 
the horizontal position of a virtual pea-shooter to hit a vertical target line. The 
position of each pea x was drawn from a skewed distribution whose mean was 
determined by their aim point m and whose skewness was determined by one 
single parameter ρ 

f x m N m

N m
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r r r

= − −( )
+ − + + −
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where N(µ, σ) is a Gaussian centered at µ with the s.d. σ. If a subject assumed a 
loss function where the cost increases quadratically with error, she should align 
the mean of her error distribution with the target. The previous study found 
the deviation of subjects’ aim point from the mean varied systematically with ρ  
(Fig. 7b). They concluded that subjects’ loss functions were quadratic for small 
errors, but less than quadratic for large errors.

For Figure 7, we simulated a virtual subject who had a quadratic loss function, 
and thus would aim for the mean, but who approximated her error distribution 
with a U-mix of three nonzero probability categories. For a specific ρ, the catego-
ries centered at the median of the error distribution and evenly partitioned the 
range of [−3.3σρ, 3.3σρ], where σρ is the s.d. of the error distribution. The prob-
ability density of each category was computed as the mean density of the error 
distribution within the range with the area under the u-mix scaled to be one.

For Supplementary Figure 7, we simulated a second virtual subject who was 
similar to the virtual subject above but who approximated her error distribution 
with an mG-mix with three components. The s.d. of each component was 0.28. 
For each specific ρ, the three components were centered in the same way as the 
U-mix components above. Their weights were estimated as free parameters to 
minimize the sum of squared differences between the error distribution and the 
mG-mix approximation.

In the experiment, the error distribution was manipulated to be right-skewed in 
half of the trials (noninverted trials) and was inverted in the other half. Figure 2b  
of ref. 31 shows subjects’ aim point as a function of ρ for the noninverted trials 
and all trials. The two curves were similar, both having the toward-median and 
away-from-median biases. But we noticed that the all-trials curve significantly 
deviated from the mean when the error distribution was symmetric (ρ = 0.5), 

(16)(16)

(17)(17)

(18)(18)
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an anomaly that could not be explained by any loss functions or probability  
distortions without introducing an asymmetry between left and right, and which 
was probably due to unknown visuo-motor biases subjects had with respect to 
pointing to left or right. For this reason, we used the curve for noninverted trials 
as the data to account for in our simulation.

Summary of statistical tests. No statistical methods were used to predetermine 
sample sizes but our choice of sample size was based on previous work, includ-
ing ref. 21. AICc18,19 and group-level Bayesian model selection20 were used in 

39. Pelli, D.G. The VideoToolbox software for visual psychophysics: transforming 
numbers into movies. Spat. Vis. 10, 437–442 (1997).

40. Brainard, D.H. The psychophysics toolbox. Spat. Vis. 10, 433–436 (1997).
41. Erev, I. et al. A choice prediction competition: choices from experience and from 

description. J. Behav. Decis. Mak. 23, 15–47 (2010).
42. Rasmussen, C.E. & Williams, C.K.I. Gaussian Processes for Machine Learning  

(MIT Press, 2006).

all experiments. Pearson’s correlation was used in experiment 1. We verified  
the assumptions of all of the statistical tests used.

A Supplementary Methods checklist is available.
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